WA2: Hybrid Ceramic Membrane Filtration in Water Treatment

Pilot tests at WWTP Almelo

Erwin Beerendonk (KWR)/Arslan Ahmad (KWR)

This project has received funding from the European Union's Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement no. 308339.
WP22 Hybrid ceramic membrane systems (KWR, FHNW)

• HCMS offer improved rejection of dissolved compounds and optimal control of fouling of membrane fouling (Lab-scale study in TECHNEAU).

• WP22 aims at investigate the potential of HCMS at pilot scale and to optimize the overall performance for the removal of emerging contaminants.
Hybrid Ceramic Membrane Filtration

- Coagulation-CMF
- PAC-CMF
- IX-CMF
- O3-CMF
Pilot locations

• WWTP Almelo (The Netherlands)

• WWTP Basel (Switzerland)
WWTP Almelo

- Design capacity: 5200 m³/h
- Process:
 - mechanical pre-treatment (screening, grit removal)
 - activated sludge treatment operated (sequencing-batch-reactor)
 - nutrient removal by nitrification-denitrification and simultaneous phosphorous removal by precipitation

WWTP Almelo effluent quality (2014)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>St. dev.</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>N total (mg/L)</td>
<td>6.19</td>
<td>4.61</td>
<td>57</td>
</tr>
<tr>
<td>P total (mg/L)</td>
<td>1.73</td>
<td>1.19</td>
<td>57</td>
</tr>
<tr>
<td>COD (mg/L)</td>
<td>33.7</td>
<td>8.45</td>
<td>50</td>
</tr>
<tr>
<td>BOD (mg/L)</td>
<td>2.32</td>
<td>1.50</td>
<td>50</td>
</tr>
</tbody>
</table>
PAC-CMF pilot at WWTP Almelo

<table>
<thead>
<tr>
<th>Membrane area</th>
<th>2x 0,4 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal pore size</td>
<td>0,1 μm</td>
</tr>
<tr>
<td>Operation</td>
<td>dead-end</td>
</tr>
</tbody>
</table>
Experiments: (1) OMP removal (2) Operational stability
WWTP effluent + OMPs = Feed pilot plant.
Cocktail of OMPs dosed, each ≈1µg/L.
PAC dose (mg/L): 0, 15, 30, 60 [precoat mode]
BW: pressurized (5 bar) with permeate and air
CEB: BW with permeate and NaOCl

<table>
<thead>
<tr>
<th>OMPs dosed</th>
<th>µg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>metoprolol</td>
<td>0,936</td>
</tr>
<tr>
<td>gemfibrozil</td>
<td>0,953</td>
</tr>
<tr>
<td>sotalol</td>
<td>0,901</td>
</tr>
<tr>
<td>tramadol</td>
<td>0,951</td>
</tr>
<tr>
<td>carbamazepine</td>
<td>0,962</td>
</tr>
<tr>
<td>venlafaxine</td>
<td>0,881</td>
</tr>
<tr>
<td>diclofenac</td>
<td>1,027</td>
</tr>
<tr>
<td>atenolol</td>
<td>0,972</td>
</tr>
<tr>
<td>propranolol</td>
<td>0,849</td>
</tr>
<tr>
<td>trimethoprim</td>
<td>0,973</td>
</tr>
<tr>
<td>sulfamethoxazool</td>
<td>0,980</td>
</tr>
<tr>
<td>ketoprofen</td>
<td>0,999</td>
</tr>
<tr>
<td>bezafibraat</td>
<td>0,918</td>
</tr>
<tr>
<td>diatrizoic zuur</td>
<td>1,019</td>
</tr>
<tr>
<td>metronidazole</td>
<td>1,005</td>
</tr>
<tr>
<td>fenazon</td>
<td>0,996</td>
</tr>
<tr>
<td>cyclophosphamide</td>
<td>0,797</td>
</tr>
<tr>
<td>pentoxifylline</td>
<td>0,970</td>
</tr>
</tbody>
</table>

Filtration time 15 min
Filtration flux 60,80,100, 120 L/(m²·h)
BW frequency 4 times per hour
BW time <5 sec
CEB frequency 1 time per 6 hour
Chemicals used NaOCl (12,5 wt%)
Soaking time 5 min
Removal of OMPs

Flux=60 lmh

- Orange: with OMP spike, 15mg/L PAC
- Green: with OMP spike, 30mg/L PAC
- Blue: with OMP spike, 60mg/L PAC

Removal (%) vs. different OMPs:
- Carbamazepine
- Bezafibrate
- Atenolol
- Guanylic acid
- Gemfibrozil
- Diclofenac
- Diazoxide
- Cyclophosphamide
- Sulfamethoxazole
- Sotalol
- Propranolol
- Fenoxylamine
- Metronidazole
- Ketoprofen
- Metformine
- Metoprolol
- Venlafaxine
- Trimethoprim
- Tramadol

25.06.2015
Effect of flux on OMP removal at 30 mg/L PAC dose

- Flux=60 lmh, OMP spike, 30mg/L PAC
- Flux=100 lmh, OMP spike, 30 mg/L PAC

Removal (%)

- carbamazepine
- bezafibrate
- atenolol
- guanylylurea
- gemfibrozil
- diclofenac
- diatrizoic zuur
- sulfamethoxazol
- sotalol
- propranolol
- fenazon
- pentoxifylline
- metronidazol
- ketoprofen
- metformine
- metoprolol
- venlafaxine
- trimethoprim
- tramadol
Process stability

TMP without PAC dosing
Flux=100 L/m².h
TMP with 30mg/L PAC
Flux=100 L/m².h
Conclusions

• Removal increases with PAC dose, as expected. However, it is not proportional to PAC dose.
• Precoating PAC on membrane surface increased average TMP.
• At 30mg/L PAC, the OMP removal was similar at flux=60 lmh and 100 lmh.
• CEB with NaOCl effectively recover the TMP.
• At 30mg/L PAC dose and flux=100 lmh, HCMF process remained stable for more than 5 days.
Thanks for attention!