DEMEAU workshop
bioassays wrap-up
29 jan 2015

This project has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement no. 308339.
Lots of compounds reach surface water bodies;
How to study the effects on biota?
Bioassays are complementary to chemical analysis;
Bioassays are sensitive, specific, reproducible and do not make use of living animals;
Multiple endpoints are available such as estrogenic activity but also on organismal level such as algae growth;
Regulatory acceptance of in vivo ecotoxicological bioassays is better as compared to in vitro bioassays. The latter requires attention.
Armelle Hebert (VERI-VEOLIA)

• Lots of chemicals in the aquatic environment;
• Alternative testing strategies are required which can assess safety in a more rapid, efficient and cost effective fashion (and make use of fewer animals);
• Paradigm shift: identify early hazard indicators to predict later effects;
• Bioassays can be considered as tools to determine exposure and (sometimes) hazard;
• At present multiple EU projects are ongoing where bioassays play a role (DEMEAU, Solutions);
• An interesting development is Multiplex Screening (ENTOX).
Armelle Hebert (VERI-VEOLIA)

• Trigger values are important for the interpretation of bioassay results;

• Point on the horizon is further acceptance of bioanalytical tools in regulatory frameworks. A workshop at ENTOX (Australia) will be organized in February 2015.
Harrie Besselink (BDS)

- With the bioassays a focus on (toxicological) effects is possible instead of compound concentrations;
- Bioassay validation is a time-consuming process;
- A number of factors are important for widespread implementation such as suitability for high-throughput application;
- Multiple CALUX bioassays are now developed (~30 stable lines);
- On one extract multiple CALUX bioassays can be applied;
- Pharmafilter is a very good example where bioassays can have added value (monitoring of effects during treatment).
Ron van der Oost (Waternet)

- Application of bioassays in the ecotoxicological framework;
- Waternet has worked on a smart monitoring strategy starting with routine chemistry, using bioassays to prioritize and possibly ending with advanced chemistry;
- Environmental trigger values have been established for ecotoxicological purpose;
- The point of departure is a clean reference site and compared to various toxicological endpoints;
- Highest ecological risks are at agricultural area;
- The proposed methodology can reduce costs;
- Uncertainties are missing of compounds.
Merijn Schriks (KWR)

- Acceptable daily intake (ADI), bioavailability, and plasma protein binding data are required to establish trigger values.
- Body weight, drinking water consumption, and contribution of drinking water to total exposure are used to derive tolerable drinking water concentrations based on the ADI.
- Trigger values are based on drinking water concentrations of reference compounds that are unlikely to elicit effects and can safely be consumed.
Merijn Schriks (KWR)

- Validation and harmonisation of bioassays is performed along standards set by different organisations
- *In vitro* bioassays are not formally accepted for drinking water monitoring;
- Trigger values are important for regulatory acceptance of bioassays.
Eszter Simon (BDS)

- Set of 25 CALUX bioassays covering broad range of toxic endpoints;
- Automation with robot for high throughput screening;
- PC10 is taken as a reference;
- Methodology to prioritize a broad range of compounds;
- Toxic profiling;
- Anti-androgenic/progestagenic, genotoxic and xenobiotic metabolism are most relevant;
Merijn Schriks (KWR)

- Glucocorticoid activity was detected in industrial effluent
- Mass spectometry was used to screen waste waters for a range of reference compounds
- Potencies of these substances were expressed relative to dexamethasone
- Concentrations of detected compounds were multiplied by relative potencies to obtain a predicted bioassay response
- Measured responses and predicted responses were compared; differences can be explained by unidentified compounds
• Merijn Schriks (KWR)
 • Oxidative stress response was evaluated in samples of a drinking water treatment plant
 • Ozonation caused an increase in the bioassay response (although the number of compounds present decreased), which was largely removed by activated carbon filtration
 • Oxidative stress response and human health are not quantitatively related, but the bioassay is suited for screening purposes
Kirsten Baken (KWR)

- Genotoxicity as a relevant parameter for water quality assessment;
- Example is the Ames fluctuation assay;
- Can be used as a screening tool, alert for genotoxicity;
- It is not a proof for human health hazard;
- A lot of disinfection byproducts are formed during drinking water treatment;
- Chlorinated byproducts are least known ones (more potent are the brominated /iodinated DBPs);
- Ames test can be applied to study DBP formation during advanced drinking water treatment.
Thank you for your attention!

This project has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement no. 308339.